Performance regression and algorithm selection
for MIP-based Neural Network Verification

Jasmin Kareem
MSc Data Science: Computer Science Student at Leiden University

Introduction

e Neural Network Verification using a parallel portfolio of solver configurations
e Reduces number of timeouts and improves verification speed

e Further improvements to performance are possible.

e Two main goals:

o Predicting performance (runtime) of the configurations (with the use of problem-specific instance features)
o Implementing per-instance algorithm selection techniques to this problem

Parallel portfolio

Optimised
MIP solver
with config. 1
ot

Optimised
MIP solver
i with config. 2

“pig”
,‘v __ Optimal,
~ Optimised i.e., not robust
s MIP solver
with config. n

Source: Konig, M., Hoos, H.H. & Rijn, J.N.v. Speeding up neural network robustness verification via algorithm
configuration and an optimised mixed integer linear programming solver portfolio

Neural network

Infeasible,
i.e., robust

“airliner”

Example

Predicting performance of configurations

e Configurations have different solve times, some even timeout

e Can we predict performance?

Config Solve time Status

1 2456.4 Infeasible/Unbounded
2 2176.09 Infeasible

3 3692.77 Infeasible

default 9600 User limit

Example of a single sample of the output of the MIPverify solver configurations (sample 17).

Finding features for MIP based problems

e \Work already exists for MIP
instance features

e But there are other ways to find
features for this problem

Problem Type (trivial):

1. Problem type: LP, MILP, FIXEDMILP, QP, MIQP, FIXEDMIQP,
MIQP, QCP, or MIQCP, as attributed by CPLEX

Problem Size Features (trivial):
2-3. Number of variables and constraints: denoted n and m, re-
spectively
4. Number of non-zero entries in the linear constraint matrix,

A
5-6. Quadratic variables and constraints: number of variables

68-73.

of en-
tries per row (the normalization is by dividing by sum of the
row’s absolute values): mean, vc

Objective Function Features (cheap): each feature is replicated
three times, for X € {C, NC, V}

74-79.

i function {lcil}j_,: mean
and stddev
80-85. Normalized function
(\c,\/n;);’:]. where n; denotes the number of non-zero en-
tries in column i of A: mean and stddev

function coeffi-

with and number of . sq j
7. Number of non-zero entries in the quadratic constraint cients {|c;|/ ;])‘!'71; mean and stddev
matrix, Q e

8-12. Number of variables of type: Boolean, integer, continuous,
semi-continuous, semi-integer
13-17. Fraction of variables of type (summing to 1): Boolean, inte-
il it

ger, g

18-19. Number and fraction of non-continuous variables (count-
ing Boolean, integer, semi-continuous, and semi-integer vari-
ables)

20-21. Number and fraction of unbounded non-continuous vari-
ables: fraction of non-continuous variables that has infinite
lower or upper bound

22-25. Support size: mean, median, vc, q90/10 for vector composed
of the following values for bounded variables: domain size for
binary/integer, 2 for semi-continuous, 1+domain size for semi-
integer variables.

Variable-Constraint Graph Features (cheap): each feature is repli-
cated three times, for X € {C, NC, V}

26-37. Variable node degree statistics: characteristics of vector
(Z[Jd H(Ai_j # 0))x;ex: mean, median, vc, 90/10

38-49. C node degree istics of vector
(leéx E(A,v_l- # oncjec: mean, median, vc, q90/10

Linear Constraint Matrix Features (cheap): each feature is repli-
cated three times, for X € {C, NC, V}

50-55. Variable ics of vector
(Xcjec Ai.j)xex: mean, ve
g istics of vector

(leex Ai_j)(-]ef: mean, v¢
62-67.

of matrix entries,
Aj, j/bj: mean and ve (only of elements where bj # 0)

LP-Based Features (expensive):

92-94. Integer slack vector: mean, max, Ly norm
95. Objective function value of LP solution

Right-hand Side Features (trivial):
96-97. Right-hand side for < constraints: mean and stddev

98-99. Right-hand side for = constraints: mean and stddev
100-101. Right-hand side for > constraints: mean and stddev

Features™

102-103. CPU times: presolving and relaxation CPU time

104-107. Presolving result features: # of constraints, variables, non-
zero entries in the constraint matrix, and clique table in-
equalities after presolving.

Probing Cut Usage Features® (moderate):

108-112. Number of specific cuts: clique cuts, Gomory fractional
cuts, mixed integer rounding cuts, implied bound cuts, flow
cuts

Probing Result features* (moderate):

113-116. Performance progress: MIP gap achieved, # new incum-
bent found by primal heuristics, # of feasible solutions found,
of solutions or incumbents found

Timing Features*

117-121. CPU time required for feature computation: one feature
for each of 5 groups of features (see text for details)

Fig. 2. MIP instance features; for the variable-constraint graph, linear constraint matrix, and objective function features, each feature is computed with
respect to three subsets of variables: continuous, C, non-continuous, NC, and all, V. Features introduced for the first time are marked with *.

Source: Frank Hutter, Lin Xu, Holger H. Hoos, Kevin Leyton-Brown,
Algorithm runtime prediction: Methods & evaluation,

Artificial Intelligence

Per-instance algorithm
selection

x € P

Problem
Space

feature
extraction f

f(x) € F

select o to
maximise ||y||

yey
Performance

Space

y(a(x)) apply
algorithm o

Feature Space

Source:

a = S(F(x)
Selection Mapping

a €A
Algorithm

Space

J.R. Rice, The Algorithm Selection Problem, 1976.

Going forward...

1. Make an overview of the current literature on:

MIP solvers

Problem specific instance features
Algorithm selection methods

Etc..

2. Replicating results from relevant papers to the problem

3. My own implementation

o Building model to predict runtime using found features
o Algorithm selection

o O O O

